学术报告二十一:GENERALIZED ADLER-MOSER POLYNOMIALS AND MULTIPLE VORTEX RINGS FOR THE GROSS-PITAEVSKII EQUATION

发布时间:2021-03-08


报告时间:2020312日(星期五)9:00-10:00

报告地点:腾讯会议 ID: 591 755 897

报 告 人:敖微微教授

工作单位:武汉大学

举办单位:外围投注官网

报告简介:

We construct new finite energy traveling wave solutions with small speed for the three dimensional Gross-Pitaevskii equation. These solutions have the shape of 2n + 1 vortex rings, far away from each other. Among these vortex rings, n + 1 of them have positive orientation and the other n of them have negative orientation. The location of these rings are described by the roots of a sequence of polynomials with rational coefficients. The polynomials can be regarded as a generalization of the classical Adler-Moser polynomials. This is joint work with Yehui Huang, Yong Liu and Juncheng Wei.

 

报告人简介:

敖微微,女,198812月生,武汉大学教授,博士生导师20136月毕业于香港中文大学数学系,获理学博士学位,导师魏军城(Juncheng Wei)教授;20138月至20147月在台湾理论研究中心从事博士后研究工作,合作导师林长寿(Chang-Shou Lin)教授,20148月至20167月在加拿大不列颠哥伦比亚大学数学系从事博士后研究工作,合作导师魏军城(Juncheng Wei)教授,20167月加入武汉大学数学与统计学院。敖微微教授的主要研究方向为非线性偏微分方程和分数阶偏微分方程,在Duke Math. J.Journal fur die Reine und Angew. Math.(Crelle's Journal)Mem. Amer. Math. Soc.J. Math. Pures Appl.Ann. Sc. Norm. Super. Pisa Cl. Sci.J. Funct. Anal.Calc. Var. Partial Differential EquationsSIAMJ. Math. Anal.J. Differential Equations等国际顶尖学术期刊发表论文近30篇。